大数据: 预知未来的高科技水晶球
Early last year, you might recall, Target found itself at the center of a storm of outrage. The retailers number crunchers had come up with a statistical method for predicting which of its customers were most likely to become pregnant in the near future, giving Targets marketers a head start on pitching them baby products.你有可能还忘记,塔吉特百货公司(Target)在去年初曾身陷气愤的舆论漩涡中心。那是因为这家零售商的数据专家们研发出有了一种统计资料方法,可以预测哪些客户有可能在近期分娩,营销人员向她们促销婴幼儿产品时,就享有了先人一步的优势。The model worked: Target expanded its customer base for pregnancy and infant-care products by about 30%. But the media brouhaha, with everyone from The New York Times to Fox News accusing the company of spying on shoppers, took weeks to die down.这个模型很管用:在塔吉特出售孕期及婴幼儿产品的客户快速增长了30%。但这却惹来舆论一片哗然,从《纽约时报》(The New York Times)到福克斯新闻(Fox News),完全所有人都谴责该公司是在“暗地监测”购物者。
这场风波好几周后才平息下去。If Targets success at setting its sights on potential moms-to-be gives you the creeps, Eric Siegels new book could ruin your whole day. Siegel is a former Columbia professor whose company, Predictive Impact, builds mathematical models that cull valuable nuggets of data from floods of raw information. Companies use the tools to forecast everything from what well shop for, to which movies well watch, to how likely we are to be in a car accident or default on our credit cards.如果塔吉特顺利监测准妈妈这件事早已让你实在毛骨悚然了,那埃里克?西格尔的新书难道不会让你惶惶不可终日的。西格尔曾是哥伦比亚大学(Columbia University)的教授,他的公司叫“预测影响”(Predictive Impact),专门研发各类数学模型,这些模型能从海量原始数据中萃取出有极具价值的信息。各类公司都在用于这些工具展开预测,不管是我们想要出售什么东西,还是我们想要看什么电影,不管是我们遇上车祸的可能性有多低,还是我们有多大可能会信用卡欠款,都能预测出来。
In Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, Siegel explains how these models work and where the pitfalls are, in clear, colorful terms. Simply put, predictive analytics, or PA, is the science of learning from experience. Starting with data about the past and current behavior of a given group of people -- whether customers, patients, prison inmates up for parole, voters, or employees -- analysts can predict what theyll probably do next.在《预测分析:预测谁将页面、出售、骗子或丧生的力量》(Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die)一书中,西格尔用明晰生动的语言说明了这些模型运作的机制及各类误区。简而言之,预测分析,或全称PA,就是一种从经验中自学的科学。从既定人群——客户、病人、将要减刑的囚犯、选民或员工——过去和当前的不道德数据应从,分析师就能预见他们下一步有可能的不道德。
This kind of high-tech crystal ball is behind the growing trend to make decisions more data driven, Siegel writes. In fact, an organization that doesnt leverage its data in this way is like a person with a photographic memory who never bothers to think.这是一种可以预见未来的高科技“水晶球”。西格尔写到,它位列“日益流行的、更加依赖数据做到决策的趋势”幕后,“实质上,如果一个机构从不用这种方式充分利用自己的数据,那就和一个人有过目不忘的本事却从不动脑筋异于”。Predictive Analytics is packed with examples of how Citi, Facebook, Ford, IBM, Google, Netflix, PayPal and many other businesses and government agencies have put PA to work. Pfizer, for instance, has a predictive model to foretell the likelihood that a patient will respond to a given new drug within three weeks. LinkedIn uses PA to pinpoint the fellow members you might want as connections. At the IRS, a mathematical ranking system applied to past tax returns empowered IRS analysts to find 25 times more tax evasion, without increasing the number of investigations.这本书列出了非常丰富的案例,有关花旗集团(Citi)、Facebook、IBM、谷歌公司(Google)、网飞来公司(Netflix)、贝宝(PayPal)和其他企业及政府机构利用预测分析的例子比比皆是。比如,辉瑞制药(Pfizer)就有一个预测模型,它能预告片病人在三周内对一种等价新药产生药效反应的几率。
LinkedIn会用PA来精确寻找你期望联系的用户。而在美国国税局(IRS),一套用作过去纳税申报单的数学排序系统“让IRS的分析师在不减少调查的前提下,能找到比以前多25倍的洗钱情况。”And then theres Hewlett-Packard. A couple of years ago, alarmed by annual turnover rates in some divisions as high as 20%, HP decided to try anticipating which of its 330,000 employees worldwide were most likely to quit. Beginning with reams of data on things like salaries, raises, promotions, and job rotations, a team of analysts correlated that information with detailed employment records of people who had already left. Based on the similarities they found, the researchers assigned each current employee a Flight Risk score.还有一个惠普公司(Hewlett-Packard)的案例。
几年前,惠普的一些部门每年离职率高达20%,不受此感受到,惠普要求预测其全球33万名员工中谁最有可能请辞。分析师团队从海量数据应从,如薪酬水平、加薪情况、晋升情况及轮岗情况等,将它们和已辞职员工的详尽工作经历联系一起积极开展分析。
在他们所找到的数据相似性基础上,研究者们为目前每位员工都打了一个辞职风险(Flight Risk)评分。
本文关键词:大,数据,预知,未来,的,高科技,水晶球,Early,last,开云手机版app下载
本文来源:开云手机版app下载-www.scjhzsjt.com
同类文章排行
- 1款蛋糕 2种味道 酸甜的蔓越莓加上浓浓的玫瑰香气 口感超棒
- 商务部条法司世贸处组织召开加拿大原木出口限制措施讨论会
- IGN评分7.5 《塞尔达无双:终极版》登入Switch平台
- 《无人深空》开发商推特被黑 称游戏就是一个错误
- 开云手机版app下载:南芬区积极做好春季森林防火准备工作_林业
- 开云手机版app下载-木材市场进入淡季 菠萝格销量削减过半
- PSV日本将于19年停止出货 目前暂无新机计划
- 久久鸭翅的做法_久久鸭翅(懒人版,0难度)_久久鸭翅怎么做
- 肉末土豆泥的做法_肉末土豆泥怎么做_最初的最美❤的菜谱
- 开云手机版app下载|板材十大品牌:热到30+,小心室内甲醛爆表毁
最新资讯文章
- 《古惑狼赛车:重制版》与原版画面对比 诚意满满进步巨大
- 《无主之地3》IGN评分9.0 装备驱动游戏典范
- 大厨分享葱爆羊肉做法 牢记3点技巧 羊肉嫩滑鲜香 不柴也不膻
- 卤肉饭这么做 能让女朋侪吃三碗饭
- 泡菜炒红薯粉的做法_泡菜炒红薯粉怎么做_斯佳丽WH的菜谱
- 家具创业加盟品牌怎么选?窝居智家优质家居平台
- 俄认为提高原木出口关税不会造成预算损失
- 开云手机版app下载_四川家具商会会长表示:川家具将再战一级城
- ‘开云手机版app下载’太仓港新增非洲加蓬等14个木材来源国 清
- 开云手机版app下载:临沂人造板出口货值首次突破20亿美元
- 红糖糍粑的做法_红糖糍粑怎么做_ADaoFu零售批发的菜谱
- 11月上海口岸进口木材:北美材进口量下降近二成
- 商务部条法司世贸处组织召开加拿大原木出口限制措施讨论会
- 木材加工行业仍面临挑战 绿色制造成为发展必由之路‘开云手机
- 杭州审理一起网络关键词诈骗案 涉案金额近300万【开云手机版
- 《全新的世界》发布预告片上架Steam 九折优惠售价仅32元
- CCG EXPO 2019《动漫自走棋》初亮相 现场体验送大奖
- 花生糖糕的做法_花生糖糕怎么做_ 怡
- 私房菜:蒜蓉粉丝娃娃菜,夜市最受欢迎的美食,简单做法
- 满洲里口岸木材加工业海外市场扩容